Pyrolysis

 

Microwave Pyrolysis


© G. Whittaker, 1994 & 1997. This work, or extracts from this work may be reproduced only with the written permission of the author.


Microwave pyrolysis

 Closely allied to reactions carried out on supports is the pyrolysis of organic materials. Recent work has involved the use of zeolites or other catalyst beds, although early work showed that by rapidly heating solid organic materials with microwaves, it is possible to pyrolyse them in a manner analogous to that of conventional techniques. The earliest work involved the pyrolysis of cellulose to give predominantly furfural.148 The pyrolysis of starch, or indeed any 1,4 glucan, may be carried out with an irradiation time of 5 - 15 minutes (depending upon the mass of starting material) to give the chiral synthon 1,6 - anhydro-[beta]-D-glucopyranose. It is suggested that the efficiency of the reaction may be dependent upon density of the starch.

 

 

starch pyrolysis scheme

 

 By using zeolites to aid the pyrolysis, it has been found that differences are observed between conventional and microwave heating in the cracking reaction:149

 

 n-C5H12-------> CH4 + iso-C4H8

 

 There is an increase in the proportion of methane which is formed when microwave heating is employed. Whether or not this represents a specific microwave effect is debatable, since measurement of the temperature in microwave systems is subject to inaccuracy.

 The cracking of methyl-2-pentane over a Pt-Alumina catalyst also shows differences in selectivity between the microwave and conventionally heated reactions (Table 1).150 In particular, the proportion of benzene is dramatically increased.

 


 Crackinga

Isomerisation


3 x C2

C1+C5

C2+C4

2xC3

M3Pb

HEXc

MCPd

BENe

Microwave /300oC

0.7

17.2

7.8

5.0

26.5

27.9

7.9

6.9

Classical / 300oC

0.6

17.5

9.4

5.7

21.0

28.4

17.4

0.3

Classical / 325oC

0.9

19.8

10.1

6.9

22.8

31.0

5.9

3.1

a Cn where n=the number of carbon atoms, b Methyl-3-pentane, c n-Hexane, d Methylcyclopentane,e Benzene

 

 Table 1 Cracking of methyl-2-pentane over Pt-Alumina

 

 

In a more recent study, the cracking of benzene was performed over a Ni-Zeolite catalyst to give an unexpectedly high degree of selectivity and efficiency (Table 2).151 Conventionally, the catalysts used - Silica and alumina bonded molecular sieves, and Al-SR115 + Ni - show no benzene cracking abilities. A further zeolite - USHY - showed minor activity, but was only capable of converting 4.7% of the benzene, even at 545&#176C. The Microwave reaction was carried out by packing the zeolite into a 2cm diameter tube placed through a waveguide, and passing benzene vapour through under microwave irradiation. Microwave power was applied in 520ms pulses of ~2.5kW followed by 25 second rest periods. Although benzene is an expensive starting material for the formation of lower hydrocarbons, this selectivity is of interest to industrial processes where aromatic hydrocarbons are formed as a by-product, and in the disposal of toxic but unreactive industrial wastes

 


 Thermala

Microwavea

Product

Zeolite USHY / 545&#176C

Al-SR115-Ni

 Unactivated

Al-SR115-Ni

 Activatedb

Si-SR115-Ni

 Unactivated

Methane

0.05

2.53

5.63

1.72

Acetylene

-

91.95

89.59

93.17

Ethylene

0.03

0.76

3.84

0.52

Ethane

-

0.11

0.11

-

C3

0.04

0.30

0.27

-

C4

0.01

4.26

0.11

2.06

C5

-

0.05

0.41

2.52

Toluene

2.60

-

-

-

>= C8

0.61

-

-

-

Coke

0.10

-

-

-

aNumbers indicate the quantity of the product expressed as a percentage of the benzene introduced .b The zeolite was activated by heating to 400&#176C for 6 hours in a mixture of hydrogen and helium.

 

 Table 2 Catalytic cracking of benzene using microwaves151

 

 

References

 

 1. N.H. Williams. J. Microwave Power2, 123 (1967).

 2. V. Daniels. Dielectric Relaxation , Academic Press, London (1967).

 3. N.E. Hill, W.E. Vaughan, A.H. Price & M. Davies. Van Nostrand Reinhold Co. London (1969).

 4. J.B. Hasted. Chapman Hall (1973).

 5. H. Fröhlich. Theory of Dielectrics , Oxford University Press, London (1958).

 6. P. Debye. Polar Molecules , Chemical Catalog, New York (1929).

 7. A. Von Hippel. Dielectric Materials and their Applications MIT Press, (1954).

 8. P. Debye. Phys. Zs.36, 100 (1935).

 9. J.C. Maxwell. A Treatise on Electricity and Magnetism Dover Publications, Dover (1954).

 10. K.W. Wagner. Arch. Elektrotech.2, 371 (1914).

 11. R.W. Sillars. J. Proc. Inst. Elect. Engrs.100, 199 (1937).

 12. B.V. Hamon. Aust. J. Phys.6, 304 (1953).

 13. J.S. Dryden & R.J. Meakins. Proc. Phys. Soc. B.70, 427 (1957).

 14. M.M.Z. Kharadly & W. Jackson. Proc. Inst. Elect. Eng.100, 119 (1953).

 15. W.H. Sutton. Am. Ceram. Soc. Bull.68, 376 (1989).

 16. V. Kenkre, L. Skala, M. Weiser & J. Katz. Journal Of Materials Science26, 2483-2489 (1991).

 17. G. Kriegsmann. in Journal Of Applied Physics 1960-1966, ( 1992).

 18. M. Bacci, et al. J. Chem. Soc. Faraday. Trans.77, 1503 (1981).

 19. G. Bond, R. Moyes, S. Pollington & D. Whan. Chemistry & Industry 686-687 (1991).

 20. D.R. Baghurst & D.M.P. Mingos. J Chem Soc Chem Commun 674-677 (1992).

 21. A. Bose, et al. Journal Of Organic Chemistry56, 6968-6970 (1991).

 22. A.K. Bose, et al. Heterocycles30, 741 (1990).

 23. R.J. Giguere, T.L. Bray, S.M. Duncan & G. Majetich. Tet. Lett.27, 4945 (1986).

 24. W.C. Sun, P.M. Guy, J.H. Jahngen, E.F. Rossomando & E.G.E. Jahngen.J. Org. Chem.53, 4414 (1988).

 25. A. Srikrishna & S. Nagaraju. in Journal Of The Chemical Society-perkin Transactions I 311-312, ( 1992).

 26. K. Dema-Khalaf, A. Morales-Rubio & M. de la Guardia. Anal. Chim. Acta281, 249-257 (1993).

 27. M.P. Vazquez-Tato. Synlett7, 506 (1993).

 28. A.K. Bose, B.K. Banik, K.J. Barakat & M.S. Manhas. Synlett8, 575-576 (1993).

 29. R. Alajarin, J.J. Vaquero, J.L.G. Navio & J. Alvarez-Builla.Synlett4, 297-298 (1992).

 30. A. Molina, J.J. Vaquero, J.L. Garcia-Navio & J. Alvarez-Builla.Tetrahedron Letters34, 2673-2676 (1993).

 31. F. Adamek & M. Hajek. Tetrahedron Letters33, 2039-2042 (1992).

 32. M. Pagnotta, C.L.F. Pooley, B. Gurland & M. Choi. J Phys Org Chem6, 407-411 (1993).

 33. D. Stuerga, K. Gonon & M. Lallemant. Tetrahedron49, 6229-6234 (1993).

 34. R. Abramovitch, D. Abramovitch, K. Iyanar & K. Tamareselvy.Tetrahedron Letters32, 5251-5254 (1991).

 35. K.D. Raner & C.R. Strauss. J. Org. Chem.57, 6231 (1992).

 36. K.D. Raner, C.R. Strauss, F. Vyskoc & L. Mokbel. J Org Chem58, 950-953 (1993).

 37. R. Gedye, et al. Tet. Lett.27, 279 (1986).

 38. R. Gedye, F. Smith & K. Westaway. Educ. Chem.25, 55 (1988).

 39. R.N. Gedye, F.E. Smith & K.C. Westaway. Can. J. Chem.66, 17 (1988).

 40. R. Gedye, W. Rank & K. Westaway. Canadian Journal Of Chemistry-journal Canadien De Chimie69, 706-711 (1991).

 41. R.J. Giguere, et al. Tet. Lett.28, 6553 (1987).

 42. M.d.l. Guardia, A. Salvador, M.J. Gomez & Z.A. Debenzo. Anal. Chim. Acta224, 123 (1989).

 43. A. Stambouli, M. Chastrette & M. Soufiaoui. Tetrahedron Letters32, 1723-1724 (1991).

 44. S. Takano, A. Kijima, T. Sugihara, S. Satoh & K. Ogasawara.Chemistry Letters 87 (1989).

 45. M.S.F. Lie Ken Jie & C. Yan kit. Lipids23, 367 (1988).

 46. D.-R. Hwang, S.M. Moerlein, L. Lang & M.J. Welch. J. Che,. Soc. Chem. Commun. 1799 (1987).

 47. T.J. McCarthy, C.S. Dence & M.J. Welch. Appl. Radiat. Isot.44, 1129-1132 (1993).

 48. C. Peterson. New Scientist123, 44 (1989).

 49. S.T. Chen, S.H. Chiou & K.T. Wang. J. Chem. Soc., Chem. Commun. 807 (1990).

 50. M. Ali, S.P. Bond, S.A. Mbogo, W.R. McWhinnie & P.M. Watts. J. Organometallic Chem.371, 11 (1989).

 51. D.R. Baghurst & D.M.P. Mingos. J. Organometallic Chem.384, C57 (1990).

 52. Q. Dabirmanesh & R.M.G. Roberts. J. Organomet. Chem.460, C28-C29 (1993).

 53. C. Akyel & E. Bilgen. Energy14, 839 (1989).

 54. M. Finzel, M. Hawley & J. Jow. Polymer Engineering And Science31, 1240-1244 (1991).

 55. F.M. Thuillier, H. Jullien & M.-F. Grenier-Loustalot. Polym. Comm.27, 206 (1986).

 56. F.M. Thuillier & H. Jullien, Makromolekulare Chemie-macromolecular Symposia, European Symp On Polymeric Materials : Processing And Use At The 1st Meeting Of The European Polymer Federation Lyon,france D870914-18, (1989)

 57. N. Beldjoudi, A. Bouazizi, D. Doubi & A. Gourdenne. Eur. Polym. J.24, 49 (1988).

 58. N. Beldjoudi & A. Gourdenne. Eur. Polym. J.24, 53 (1988).

 59. N. Beldjoudi & A. Gourdenne. Eur. Polym. J.24, 265 (1988).

 60. S. Watanabe, K. Hayama, K.H. Park, M. Kakimoto & Y. Imai. Makromol Chem-Rap Comm14, 481-484 (1993).

 61. H. Jullien & H. Valot. Polymer26, 506-510 (1985).

 62. G. Phillips, et al. J. Appl. Phys.69, 899 (1991).

 63. Y. Bazaird, S. Breton, S. Toutain & A. Gourdenne. Eur. Polym. J.24, 521 (1988).

 64. Y. Bazaird & A. Gourdenne. Eur. Polym. J.24, 873-881 (1988).

 65. A. Bouazizi & A. Gourdenne. Eur. Polym. J.24, 889 (1988).

 66. A. Gourdenne. Abstracts of Papers of the Am. Chem. Soc.196, 79 (1988).

 67. R.K. Agrawal & L.T. Drzal. J. Adhesion29, 63 (1989).

 68. K.J. Hook, R.K. Agrawal & L.T. Drzal. J. Adhesion32, 157 (1990).

 69. P. Kathirgamanathan. Polymer43, 3105 (1993).

 70. CEM-Corporation. Welcome to Microwave 101 Publicity brochure, (1993).

 71. H. Matusiewicz & R.E. Sturgeon. Prog. Anal. Spectr.12, 21 (1989).

 72. R. Rawls. Chem. Eng. News64, (1986).

 73. L.B. Gilman & W.G. Engelhart. Spectroscopy4, 18 (1988).

 74. T. Paukert. in Chemicke Listy 143-149, ( 1992).

 75. S. Kokot, G. King, H.R. Keller & D.L. Massart. Anal Chim Acta259, 267-279 (1992).

 76. I.V. Kubrakova, M.Y. Su, M. Abuzveida & N.M. Kuzmin. J Anal Chem-Engl Tr47, 563-568 (1992).

 77. H.M. Kuss. Fresenius J Anal Chem343, 788-793 (1992).

 78. H.M. Kingston, L.B. Jassie & (eds.). Indroduction to Microwave Sample Preparation American Chemical Society, Washington D.C. (1988).

 79. J. Wenrui & W. Junying. Anal. Chim. Acta.245, 77-81 (1991).

 80. M. Burguera, J.L. Burguera & O.M. Alarcon. Analytica Chimica Acta179, 351-357 (1986).

 81. M. Burguera, J.L. Burguera & O.M. Alarcon. Anal. Chim. Acta214, 421 (1988).

 82. P. Hocquellet & M. Candillier. Analyst116, 505-509 (1991).

 83. A.D. Hewitt & C.M. Reynolds. Atomic Spectrosc.11, 187 (1990).

 84. K. Igarashi, R. Nakashima & T. Naya. Bunseki Kagaku40, (1991).

 85. W.R. Alexander & T.M. Shimmield. J. Radioanal. & Nucl. Chem. Lett.145, 301 (1990).

 86. M. Bettinelli & U. Baroni. International Journal Of Environmental Analytical Chemistry43, 33-40 (1991).

 87. P.G. Riby, S.J. Haswell & R. Grzeskowiak. J. Anal. Atomic Spectrom.4, 181 (1989).

 88. M.A. Mateo & S. Sabate. Anal Chim Acta279, 273-279 (1993).

 89. M.d.l. Guardia, V. Carbonell, A. Morales-Rubio & A. Salvador.Talanta40, 1609-1607 (1993).

 90. M.R. Saati. Adv. Lab. Autom. Rob.6, 521-532 (1990).

 91. K. Chatakondu, M.L.H. Green, D.M.P. Mingos & S.M. Reynolds. J. Chem. Soc. Chem. Comm. 1515 (1989).

 92. R.C. Ashcroft, et al. Polyhedron11, 1001-1006 (1992).

 93. T. Hirai, I. Tari & T. Ohzuku. Bull. Chem. Soc. Jpn.53, 1477 (1980).

 94. P.G. Jolly, Thermodynamics In Australia - Past, Present And Future, Conf On Thermodynamics In Australia - Past, Present And Future, Preprints Brisbane,australia D880509-10, (1988)

 95. S.S. Stuchly & M.A. Stuchly. Advances in Drying 53 (1983).

 96. R.M. Perkin. J. Separ. Proc. Technol.1, 14 (1979).

 97. F.J. Smith. R and D30, 54 (1988).

 98. R. Roy, S. Komarneni & L. Yang. Journal Of The American Ceramic Society68, 392-395 (1985).

 99. P.A. Haas. Am. Ceram. Soc. Bull.58, 873 (1979).

 100. C.E. Holcombe. Am. Ceram. Soc. Bull.62, 1388 (1983).

 101. T.T. Chen, J.E. Dutrizac, K.E. Haque, W. Wyslouzil & S. Kashyap.Canadian Metallurgical Quarterly23, 349-351 (1984).

 102. J. Macdowell. in American Ceramic Society Bulletin 282-286, ( 1984).

 103. J.W. Walkiewicz, G. Kazonich & S.L. McGill. Minerals Metallurgical Processing5, 39 (1988).

 104. S.L. McGill, J.W. Walkiewicz & G.A. Smyres, 91st Ann. Meeting Exposition of the Am. Ceram. Soc. April 23-27., Indianapolis, USA, (1989)

 105. S.L. McGill & J.W. Walkiewicz. J. Microwave Power Electromagnetic Energy Symp. Summ.22, 175 (1987).

 106. A.J. Berteaud & J.C. Badot, J. Microwave Power, (1976)

 107. V.K. Varadan, Y. Ma, A. Lakhtakia & V.V. Varadan. MRS Symp. Proc.124, 45 (1988).

 108. M.A. Janney & H.D. Kimrey, Ceramic Powder Science Ii, Parts A & B, 1st International Conf On Ceramic Powder Processing Science Orlando,fl D871101-04, (1988)

 109. T.T. Meek, R.D. Blake & J.J. Petrovic, 11th Annual Conference On Composites And Advanced Ceramic Materials, 11th Annual Conf On Composites And Advanced Ceramic Materials Cocoa Beach,fl D870118-23, (1987)

 110. T.T. Meek, C.E. Holcombe & N. Dykes. J.Mater.Sci.Lett6, 1060 (1987).

 111. J.D. Katz, R.D. Blake, J.J. Petrovich & H. Steinburg. MRS Symp. Proc.124, 219 (1988).

 112. Y.L. Tian, M.E. Brodwin, H.S. Dewan & D.L. Johnson. MRS Symp. Proc.124, 213 (1988).

 113. J. Samuels & J.R. Brandon. J. Mat. Sci.27, 3259-3265 (1992).

 114. M.K. Krage. Am. Ceram. Soc. Bull.60, 1232 (1981).

 115. H. Kim, H. Kimrey & D. Kim. Journal Of Materials Science Letters10, 742-744 (1991).

 116. C. Holcombe & N. Dykes. Journal Of Materials Science26, 3730-3738 (1991).

 117. J.L. Shi, Y.L. Tian, B.S. Li, J.K. Guo & D.S. Yan. Sci China Ser A35, 1144-1152 (1992).

 118. F. Okada, S. Tashiro & M. Suzuki. Adv. Ceramics15, 201 (1985).

 119. B. Swain. Advanced Materials and Processing134, 76 (1989).

 120. C.E. Holcombe & N.L. Dykes. J. Mat. Sci. Lett.9, 425 (1990).

 121. H.D. Kimrey, M.A. Janney & M.K. Ferber. Ceramic Technology Newsletter20, 3 (1988).

 122. S. Das & T.R. Curlee. Amer. Ceram. Soc. Bull.66, 1093 (1987).

 123. C. Shibata & H. Tamai. J. Microwave Power and Electromagnetic Energy25, 81 (1990).

 124. R.B. James, P.R. Bolton, R.A. Alvarez, W.H. Christie & R.E. Valiga.J. Appl. Phys.64, 3243 (1988).

 125. S. Komenarni & R. Roy. Materials Lett.4, 107 (1986).

 126. D. Palaith, R. Silberglitt, C.C.M. Wu, R. Kleiner & E.L. Libelo.MRS Symp. Proc.124, 255 (1988).

 127. H. Fukushima, T. Yamanaka & M. Matsui. MRS Symp. Proc.124, 267 (1988).

 128. D.R. Baghurst. Chemical Applications of Microwave Radiation Oxford, , (1993).

 129. D.R. Baghurst, A.M. Chippendale & D.M.P. Mingos. Nature332, 311 (1988).

 130. D.R. Baghurst & D.M.P. Mingos. Br. Ceram. Trans. J.91, 124-127 (1992).

 131. A.R. Barron & C.C. Landry. Science260, 1653 (1993).

 132. A.G. Whittaker & D.M.P. Mingos. J Chem Soc Dalton Trans 2751-2752 (1992).

 133. R. Kniep. Angew. Chem. Int. Ed. Engl.32, 1411-1412 (1993).

 134. W.F. Klandig & J.E. Horn. Ceramics International16, 99 (1990).

 135. D. Vollath & K.E. Sickafus. J. Mat. Sci.28, 5943-5948 (1993).

 136. D. Vollath & K.E. Sickafus. J. Mater. Res.8, 2978-2984 (1993).

 137. G. Bram, A. Loupy, M. Majdoub, E. Gutierrez & E. Ruizhitzky.Tetrahedron46, 5167 (1990).

 138. D. Villemin & B. Labiad. Synthetic Communications20, 3333-3337 (1990).

 139. D. Villemin, B. Labiad & Y. Ouhilal. Chem. and Ind.18, 607 (1989).

 140. D. Villemin & B. Labiad. Synth. Commun.20, 3213 (1990).

 141. B. Rechsteiner, F. Texier-Boullet & J. Hamelin. Tet. Lett.34, 5071-5074 (1993).

 142. M. Csiba, J. Cleophax, A. Loupy, J. Malthete & S.D. Gero.Tetrahedron Lett34, 1787-1790 (1993).

 143. J.F. Pilard, B. Klein, F. Texierboullet & J. Hamelin. Synlett3, 219-220 (1992).

 144. T.W. Greene & P.G.M. Wuts. Protective Groups in Organic Synthesis Wiley, New York (1991).

 145. R.S. Varma, A.K. Chatterjee & M. Varma. Tetrahedron Lett34, 4603-4606 (1993).

 146. F. Texier-Boullet, R. Latouche & J. Hamelin. Tetrahedron Lett34, 2123-2126 (1993).

 147. A. Loupy, et al. Can J Chem71, 90-95 (1993).

 148. G.G. Allan, B.B. Krieger & D.W. Work. J. Appl. Poly.25, 1839 (1980).

 149. G. Roussy, J.-M. Thiebaut, M. Anzarmou, C. Richard & R. Martin. J. Microwave Power Electromagnetic Energy Symp. Summ. 169 (1987).

 150. J.M. Thiebaut, G. Roussy, G. Maire & F. Garin, International Conference on High Frequency Microwave Processing and Heating, Arnhem, Netherlands., (1989)

 151. G. Bamwenda, M.C. Depew & J.K.S. Wan. Res. Chem. Intermed.19, 553-564 (1993).